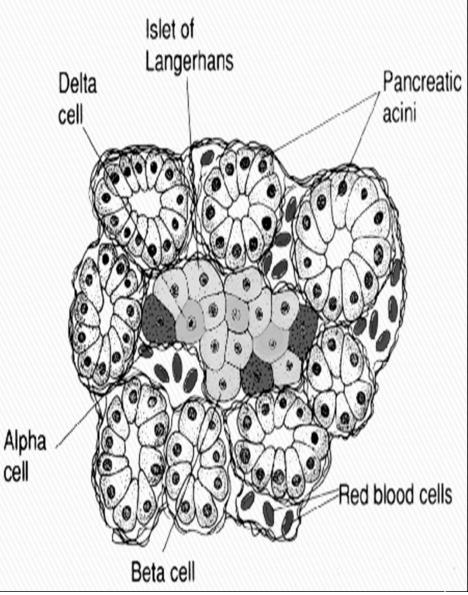


Childhood diabetes

Dr.Sarah Mathai Paediatric Endocrinologist Child Health unit1, CMCH

True stories from our Department

		7yrs, boy	2.5 yrs, girl	4 yrs, girl	10 yrs, boy	15 yr, girl
Symptoms		Low grade	Excessive	Irritability, fast	Injury to L toe	Breathing
		fever, cough X	thirst, lethargy,	breathing X 4	x 2 weeks	difficulty,
		2 days	urinary	hours	GP checked	altered
		Fast breathing	urgency &	Direct	RBS for non-	sensorium
		X 7 hours	increased	questioning,	healing, RBS at	
			frequency X 1	nocturia,	3 pm 350,	15 kg weight
			week	weight loss X 2	referred to	loss over 1
				weeks	СМСН	month
Findings		Moderately	Not	Moderately	Appears well,	Markedly
		dehydrated	dehydrated,	dehydrated	but wasted	acidotic,
		Markedly	very lethargic,	Acidotic	Wound L toe	comatose
		acidotic	not acidotic,	No focus of		
		Chest clear	systems N	infection		
Lab	DDC	750	425	C 4 9	550	1220
Lub	RBS	756	435	648	550	1230
	Urine ketones	4+	3+	3+	2+	3+
	ABG	рН 6.9	рН 7.4	рН 7.2	pH 7.4	pH 6.8
		ABE -	HCO3 : 22	HCO3 : 5	HCO3: 18	HCO3 < 5
		unrecordable				


Introduction

- Clinical condition resulting from absolute or relative insulin deficiency
- Characterized by abnormalities in the metabolism of carbohydrate, protein and lipids

Pancreas – functional anatomy of endocrine portion

- Insulin produced by the β cells in the islets of Langerhans
- Islets make up 2% of the volume of pancreas, 80% by the exocrine portion of the pancreas

Classification

Type 1 diabetes

Absolute insulin def resulting from progressive β cell destruction 1. immune mediated 2. idiopathic

Type 2 diabetes

Relative insulin def with insulin resistance

Secondary diabetes

Secondary diabetes

Genetic defects in β cell function 1. MODY (1–6) 2. mitochondrial diabetes

Genetic defects in insulin action 1. Type A insulin resistance

- 2. leprechaunism
- 3. Rabson-Mendenhall syndrome
- 4. Lipoatrophic diabetes

Secondary diabetes contd—

Diseases of the exocrine pancreas

- 1. Cystic fibrosis
- 2. Pancreatitits
- 3. Haemochromatosis
- 4. Neoplasm etc

Endocrinopathies

- 1. Cushing syndrome
- 2. Thyrotoxicosis
- 3. Phaeochromocytoma etc

Secondary diabetes contd-

- Drugs
 - glucocorticoids, thiazides diazoxide, dilantin, pentamidine etc

Infections congenital rubella CMV

Syndrome related Turner, Klinefelter, Down Prader Willi, Lawrence-Moon-Biedl etc

Type I diabetes Commonest type in children Incidence varies : Finland : 40/yr/100,000 Japan : 1/yr/100,000 S.India : 10.5/yr 100,000

(Ramachandran A, 1996)

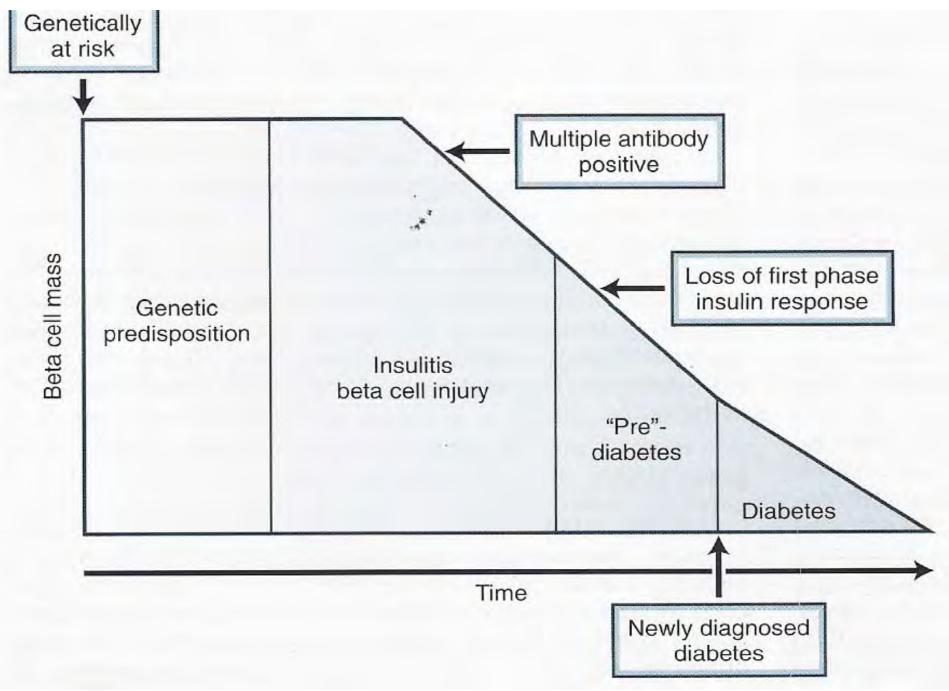
Alarming rate of increase in incidence worldwide compared to 1997, 40% higher incidence expected by 2010

- Severe insulin def- exogenous insulin absolutely essential to prevent ketosis and death
- Peak incidence

1. at 5–7 yrs : ? Infection exposure at school entry

2. during puberty : ? Insulin anatagonising effects of pubertal hormones(gonadal steroids, GH)

No gender difference, no socioeconomic bias


Steps in pathogenesis

- Genetic predisposition (HLA region)
- Environmental trigger

(viruses, dietary agents, toxins & stress)

- Initiation of autoimmunity against insulin, islet cell, GAD (ICA, GAD, IAA)
- Prediabetic phase of progressive islet cell destruction
- Clinical onset of diabetes

(when>90% of pancreas cells get destroyed)

Adapted from Atkinson MA et al, Lancet 2001;358:221-229

How do we maintain euglycaemia?

» Normal plasma glucose

Interplay between Insulin & Glucagon (also other counter regulatory hormones like cortisol, GH, adrenaline)

Insulin – most important anabolic hormone *During fasting*: Low insulin levels result in catabolism and mobilisation of stored energy *Postprandial*: High insulin levels result in an anabolic state, with excess energy stored as fuel for future use

Some terminologies

- Glycogenesis : glycogen synthesis from glucose
- Glycolysis : breakdown of glycogen to release glucose
- Gluconeogenesis : glucose synthesis from non-CHO substrates like amino acids, lactate etc
- Lipogenesis : synthesis of lipids

Lipolysis : breakdown of lipids to fatty acids & glycerol

Main sites of insulin action

Skeletal muscle

1. stimulates glucose uptake glycogen synthesis glycolysis

2. stimulates aa uptake & protein synthesis Adipose tissue

1. stimulates glucose uptake & storage as TG

2. inhibits lipolysis

Liver

- 1. Promotes glycogenesis & suppresses glycolysis
- 2. suppression of gluconeogenesis
- 3. stores FA as TG

What are the anabolic effects of Insulin? Glucose

- 1. promotes utilisation as energy source
- 2.promotes storage as glycogen for future fuel
- 3. Inhibits glycogen breakdown in liver
- 4. Inhibits gluconeogenesis

Aminoacids

1. Stimulates protein synthesis

Lipids

- 1. Enhances fat storage
- 2. Prevents mobilisation of fat as energy

T1 diabetes is a progressive catabolic state due to insulin deficiency

Effects of insulin deficiency

All symptoms are due to effects on

- Carbohydrate Metabolism
- Protein Metabolism
- Lipid Metabolism

Consequences on CHO metabolism

- Hyperglycaemia exceeding renal threshold
- Glucose leak in urine (glucosuria)
- Osmotic diuresis (polyuria, nocturia), loss of electrolytes in urine
- Dehydration and increased thirst(polydypsia)
- To maintain energy balance, increased food intake(polyphagia)

Consequences on lipid metabolism

- Increased lipolysis and decreased lipid synthesis
- Loss of adipose tissue

Elevated plasma and urine ketones

Consequences on protein metabolism

- Increased protein breakdown & decreased synthesis
- Muscle wasting

Role of counterregulatory hormones

- Insulin deficiency
- Wasting, dehydration, loss of electrolytes (physiologic stress state)
- > Hypersecretion of counterregulatory hormones
- » Metabolic decompensation

Pathophysiology of DKA

Insulin def + Excess counterregulatory hormones

- Accelerated lipolysis Increased FFA
- Accumulation of ketone bodies(acetone, acetoacetate, βhydroxybutyrate)
- Metabolic acidosis, compensatory Kussmaul's breathing

Progressive dehydration, acidosis,
 hyperosmolarity => coma & death (if untreated)

Clinical features

» Of hyperglycaemia: Polyuria, polydypsia, polyphagia, nocturia, weight loss & weakness

> + Ketosis : abdominal discomfort, nausea, vomiting

progressive & rapid deterioration

Diabetic ketoacidosis : moderate to severe dehydration, acidotic breathing, fruity odour of the breath

shock, cerebral obtundation & death if

Diagnosis

▲ Plasma sugar (mg%)
 Normal Impaired DM
 Fasting <110 111-125 ≥126
 2hr post <140 141-199 ≥ 200
 glucose

OR

Any random blood sugar≥ 200mg% with the classic symptoms

American Diabetes Association criteria, Diabetes care, 1999

Other investigations

» Baseline HbA1C (at diagnosis)

- duration of hyperglycaemia
- to evaluate treatment efficacy over time
- > Autoantibodies to β cell
 - not essential in non-obese children
- > Other autoantibodies
 - coeliac disease (TTG IgA)
 - thyroid (TPO, TG)
- > TSH, TFT
 - few weeks after stabilisation

Management

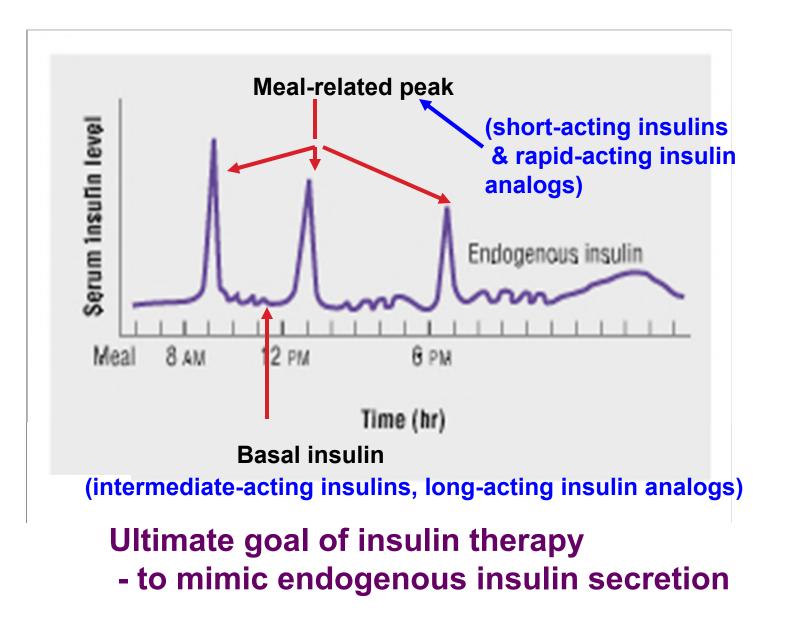
Needs a multidisciplinary team : paediatrician/paediatric endocrinologist, diabetes nurse educator, dietitian, social worker, psychologist

Goals

- Adequate glycaemic control while avoiding hypoglycaemia
- Permit normal growth & development with minimal effect on lifestyle
 - Prevent ketoacidosis

Principles of management

- Insulin therapy
- Balanced diet
- > Regular exercise
- > Regular monitoring


Insulin therapy

- Forms the cornerstone of management of Type1 DM
- Initiation at 0.7 unit/kg/day for pre-pubertal children, 1-1. 5units/kg/day during puberty
- Injection at least twice a day (2-4 times/ day)

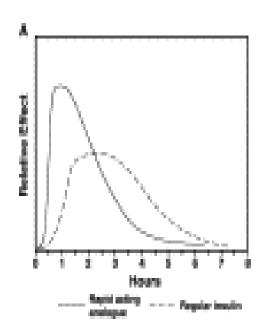
Physiological insulin secretion

Commonly used insulins

Classification on the basis of their peak effect and duration of action:

- >Short acting: Regular insulin
- >Intermediate acting: NPH/ Lente
- >Long acting : Ultralente
- >Premixed:(30/70), (50/50) not
 recommended in children

Insulin analogs


Short acting : Lispro /Aspart

cting : Glargine

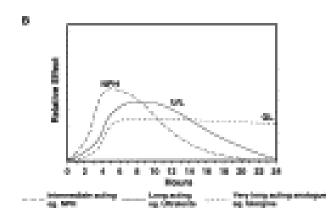
Physiologic prandial response Intraportal, biphasic & rapid

Regular insulin

- an initial lag phase
- plasma insulin level peaks after 1 to 2 hrs
- returns to basal levels after
 ~ 6 to 8 hrs

Insulin analogs -lispro and aspart

- faster onset (5-10 min)
- shorter duration of action
- more closely resemble endogenous insulin secretion
- particular importance among infants and preschool-aged children, whose food intake may be inconsistent


Basal insulins

NPH/ULtralente reduced solubility at physiologic pH – slower absorption

Disadvantages > considerable dose-to-dose variation > not "peakless" - can cause nocturnal hypoglycemia

Glargine/Detemir

- prolonged absorption
- more consistent diurnal release of insulin – no pronounced peak over 24 hours
- flatter & longer action profile
- Glargine: Inc IGF-1 receptor affinity ? Mitogenic potency

Insulin action profile

rs 6-8 hrs
nrs 12-16 hrs
rs 12-18 hrs
ak 18-30 hrs

Insulin regime


Split-mix

- combination of an intermediate acting with a short acting insulin given twice a day
- Lispro preferred in toddlers with erratic food intake
- pre-BF: 2/3rd total dose of insulin 2/3 intermediate acting 1/3 short acting pre-dinner: 1/3rd total dose of insulin

Insulin regime

Basal-bolus regime

 using single dose Glargine in the evening with twice or thrice a day short acting
 particualrly useful in children with risk of nocturnal hypoglycaemia

Insulin therapy

> Proper storage

- Strength of insulin & syringe(U 40/ U100)
- Correct sequence of insulin in the syringeregular followed by intermediate acting
- Roll syringe gently to warm insulin (to bring it to room temp)
- Correct technique of administration (45 deg subcut) & regular rotation of the sites

Insulin injection sites

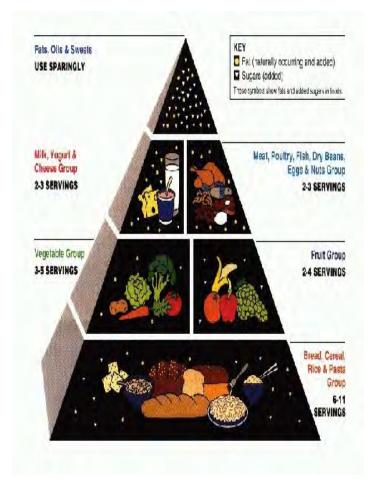
Insulin injection sites:

- Outer arm
- Abdomen
- Hip area
- Thigh

A case scenario

- 6yrs old, newly diagnosed Type 1 diabetic child (hyperglycaemia, ketonuria, no acidosis)
- Weight 18 kg
- Commence on pre-BF Insulotard 6
 - Actrapid 4
 - pre-dinner Insulotard 3
 - Actrapid 2

Insulin dose adjustment- an example


Pre-BF - Insulotard 6 Actrapid 4

Pre-dinner – Insulotard 3 Actrapid 2

Date	Pre-BF	2hrPC		Pre– dinner	
29/06/ 09	212	280	200	225	130

Diet

- To maintain ideal body wt and promote growth
- 3 main meals (BF, lunch & dinner) and 3 midmeal snacks
- Split up of calories CHO : 50-65% proteins :10-20% fats : 25-30%
- Carbohydrate counting (carb count)

Diet

> Main restriction is for highly refined sugars or foods with high glycaemic index

Family pot feeding, food exchange lists with glycemic index

Special treats

Exercise/physical activity

- Children should be encouraged to participate in all games and sports activities
- Stimulates glucose uptake into the skeletal muscle
- Plays a very important role in the management of diabetes
- Risk of hypoglycaemia with vigorous exercise- add on an extra carb exchange before and after exercise / reduction of insulin dose by 10-15% on that day

Another important guideline

> 3 year old, diagnosed as T1 diabetes a year ago. Has developed fever, cough and post tussive vomiting. How will you advise the mother?

Sick day issues

Aims Prevent dehydration Prevent ketoacidosis Prevent hypoglycaemia Ketonemia/ketonuria suggests a. either insulin deficiency stress hormones, inadequate insulin doses, missed insulin doses b. or Low glucose levels due to fasting or starvation

eg. Acute gastroenteritis

Sick day guidelines

Any infection in a diabetic child can precipitate DKA

Maintain dehydration

- Frequent blood glucose monitoring at home
- > Check for urine ketones- if positive, will need more short acting insulin and careful monitoring till ketonuria clears
- > Hospitalisation if ketonuria/hyperglycaemia persists or child develops persistent vomiting

Monitoring

Home blood glucose monitoring(HBGM)

- ideally \geq 4 times a day
- in our set-up, monitoring for 3 days at least twice a month (pre-BF, pre-lunch, pre-dinner, bedtime)
- midnight & 3 am monitoring for nocturnal hypoglycaemia (CGMS ideal)


During follow-up

- Growth and pubertal assessment
- Glycosylated Hb (HbAIC)
- > BP, Injection sites

Screening for complications

Complications

- Diabetic ketoacidosis
- Hypoglycemia
- Impact on growth and puberty

Complications

 Long term complications due to uncontrolled diabetes

Nephropathy

Retinopathy annually after 5 yrs of onset in pre-pubertal children, after 2 yrs of onset in pubertal children

Neuropathy

Limited joint mobility

Associated autoimmune conditions

- Thyroiditis
- Coeliac disease
- Addison's disease

Honeymoon period

- Most children have partial remission following the diagnosis
- Transient improvement in β cell fn
- Insulin dose < 0.5 u/kg</p>
- Duration few months from diagnosis upto 2 years
- Maintain low dose insulin treatment even during the honeymoon period

(Newer) techniques (not yet used in children with Type 1 diabetes in our unit)

Other modalities of insulin administration

- As nasal spray
- Follow-up studies upto 10 weeks and 6 months in adults promising
- Trial on in children & adolescents
- Long term efficacy & safety not known

CSII

Inhaled insulin

Monitoring devices

- Continuous blood glucose monitoring (CBGM)
- measures interstitial blood glucose via an indwelling cannula in the abdomen/buttocks
- expensive

- Non-invasive blood glucose monitoring
- reverse iontophoresis
- Device worn like a wristwatch approved for patients>7 years in the US
- expensive

Miniglucagon therapy

- For home based management of hypoglycaemia especially during sick days
- Avoids need for hospitalisation to a large extent

Increasingly prevalent scenario

- 14 yr old boy
- Foul smelling urine X 2 months
- Nocturia X 3 weeks
- Some lethargy
- O/E : Wt> 97th percentile
 BMI 27 kg/m²
 Acanthosis nigricans
 Not dehydrated or acidotic

What investigations would you like to do?

Random blood glucose : 385 If inconclusive, Fasting & 2 hr postprandial blood glucose

> Urine ketones negative

> Arterial blood gas not done because urine ketones neg

> Type 1 diabetes autoantibodies especially if ketonuria

Most recent advance in insulin?

Supramolecular insulin assembly II for a sustained treatment of type 1 diabetes mellitus *Sarita et al, National Academy of Sciences, July 2010*

- * "Administration of a single dose of the insulin oligomer(supramolecular insulin assembly II (SIA-II)), to experimental diabetic animals released insulin capable of maintaining physiologic glucose levels for > 120 days for bovine and > 140 days for recombinant human insulin without fasting hypoglycemia
- The novel SIA-II not only improved the glycemic control, but also reduced the extent of secondary diabetic complications"
- Adapted version of the abstract

